Correlative Preference Transfer with Hierarchical Hypergraph Network for Multi-Domain Recommendation

Zixuan Xu[‡], Penghui Wei[‡], Shaoguo Liu*, Liang Wang and Bo Zheng Alibaba Group Beijing, China {xuzixuan.xzx,wph242967,shaoguo.lsg,liangbo.wl,bozheng}@alibaba-inc.com

WWW 2023

Introduction

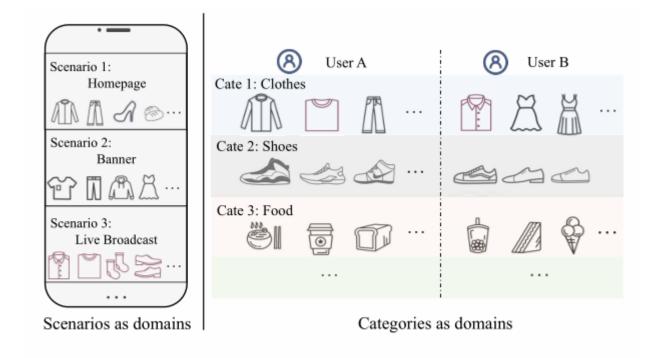


Figure 1: Illustration of multi-domain recommendation. The definition of domain can be recommendation scenario or item categories.

Conventional graph neural network based methods usually deal with each domain separately, or train a shared model to serve all domains. The former fails to leverage users' cross-domain behaviors, making the behavior sparseness issue a great obstacle. The latter learns shared user representation with respect to all domains, which neglects users' domain-specific preferences.

In this paper, the author proposes H3Trans, a hierarchical hypergraph network based correlative preference transfer framework for MDR, which represents multi-domain user-item interactions into a unified graph to help preference transfer.

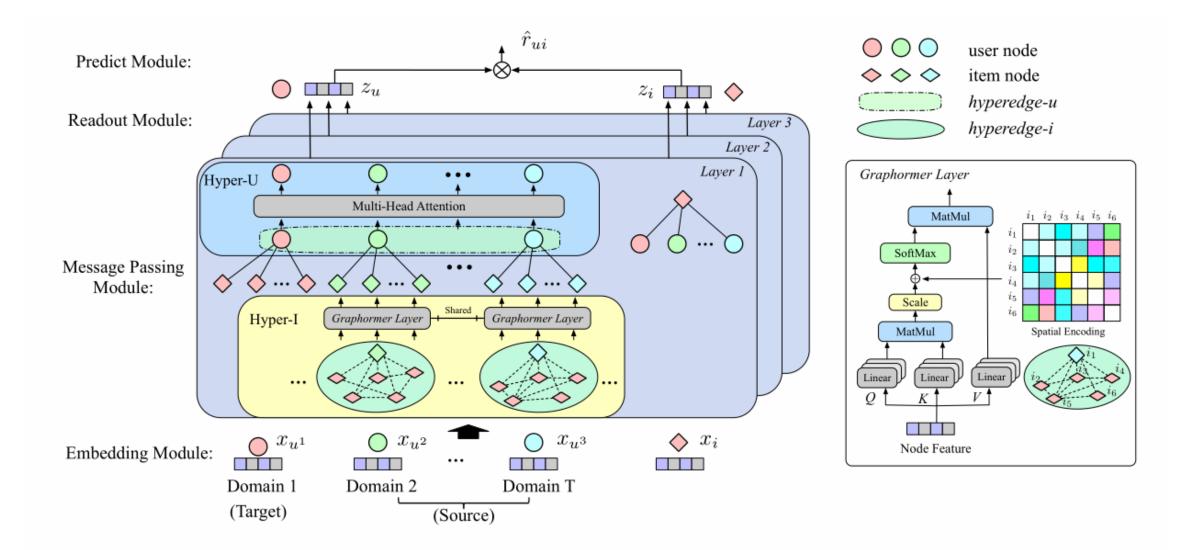


Figure 2: Overall architecture of H^3 Trans. It contains two hyperedge-based modules: adaptive user aggregation (Hyper-U) and dynamic item transfer module (Hyper-I). These two modules compose a hierarchical hypergraph neural network. Different colors refer to different domains. Here we regard the first domain \mathcal{D}_1 as target domain and the others are sources.

PRELIMINARIES:

$$\{\mathcal{D}_m\}_{m=1}^T \quad U^m \quad I^m$$

$$\hat{r}_{u,i}^{m} = f(z_u, z_i \mid \mathcal{D}_m) \tag{1}$$

$$\mathcal{R}^m \in \mathbb{R}^{|U^m| \times |I^m|}$$

$$\{\mathcal{R}^m\}_{m=1}^T$$

$$\boldsymbol{U} = \boldsymbol{U}^1 = \boldsymbol{U}^2 = \cdots = \boldsymbol{U}^T$$

$$I = I^1 \cup I^2 \cup \cdots \cup I^T$$

Unified Multi-domain Graph:

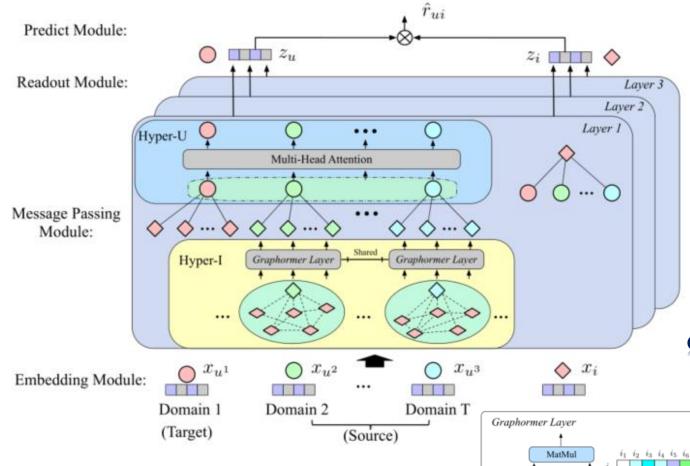
$$G = (V, \mathcal{E})$$
 $V = \mathcal{U} \cup I$

$$u \in U = (u^1, u^2, \cdots, u^T)$$

$$i \in I$$

$$\mathcal{E} = \mathcal{E}^1 \cup \mathcal{E}^2 \cup \cdots \cup \mathcal{E}^T$$

(7)



SoftMax

Scale

MatMul

Node Feature

Linear

Embedding Module.:

look-up table $X \in \mathbb{R}^{(|\mathcal{U}|+|I|)\times d}$

Message Passing Module:

Neighbor aggregation:

$$h_{\mathcal{N}_{u^m}}^{(l)} = \operatorname{AGG}_{\mathbf{U}} \left(\left\{ h_i^{(l-1)} \mid i \in \mathcal{N}_{u^m} \right\} \right)$$

$$h_{\mathcal{N}_i}^{(l)} = \operatorname{AGG}_{\mathbf{I}} \left(\left\{ h_{u^m}^{(l-1)} \mid u^m \in \mathcal{N}_i \right\} \right)$$
(2)

hyperedge-i

Path-based: $i \to u^s \to u^t \to j$

Embedding-based: From target domain find the top-k similar items

Graphormer Layer:

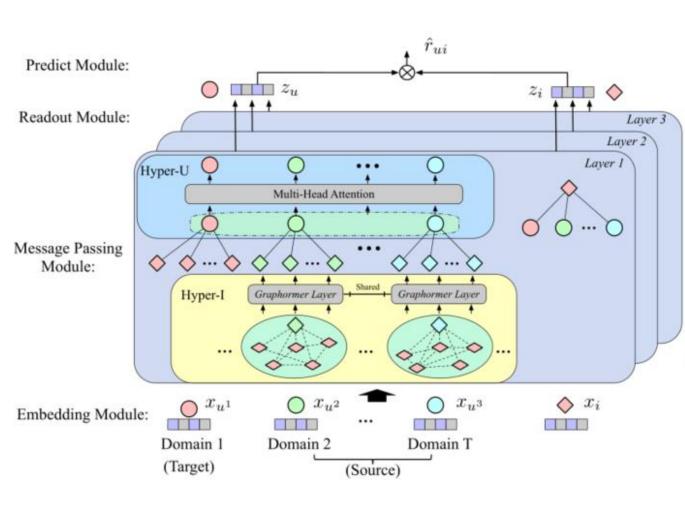
$$h_i^{(l-1)} \leftarrow \text{GH}_{\text{HyperI}}\left(\text{Concat}\left(h_i^{(l-1)}, \left\{h_j^{(l-1)} \mid | j \in \mathcal{S}_i^t\right\}\right)\right)[0]$$
(6)

where $GH_{\mathrm{HyperI}}(\cdot)$ is the graphormer layer for Hyper-I module:

$$GH_{HyperI}(H_{I}) = Concat \left(Attn_{I,1}(H_{I}), \cdots, Attn_{I,P}(H_{I})\right) W_{I}^{O},$$

$$\operatorname{Attn}_{\mathbf{I},p}(H_{\mathbf{I}}) = \operatorname{softmax} \left(\frac{Q_{\mathbf{I},p} K_{\mathbf{I},p}^{\mathsf{T}}}{\sqrt{d_{h_i}/P}} + \Phi(\mathbf{B}) \right) V_{\mathbf{I},p},$$

$$Q_{I,p} = H_I W_{I,p}^Q, K_{I,p} = H_I W_{I,p}^K, V_{I,p} = H_I W_{I,p}^V$$



Node update:

$$h_{u^{m}}^{(l)} = \text{UP}_{\text{U}}\left(h_{u^{m}}^{(l-1)}, h_{\mathcal{N}_{u^{m}}}^{(l)}\right)$$

$$h_{i}^{(l)} = \text{UP}_{\text{I}}\left(h_{i}^{(l-1)}, h_{\mathcal{N}_{i}}^{(l)}\right)$$
(3)

hyperedge-u

$$u \in U = (u^1, u^2, \cdots, u^T)$$

Multi-head Attention Layer:

$$\left[h_{u^{1}}^{(l)}, h_{u^{2}}^{(l)}, \cdots, h_{u^{T}}^{(l)}\right] \leftarrow \text{MHA}_{\text{HyperU}}\left(\left[h_{u^{1}}^{(l)}, h_{u^{2}}^{(l)}, \cdots, h_{u^{T}}^{(l)}\right]\right), \tag{8}$$

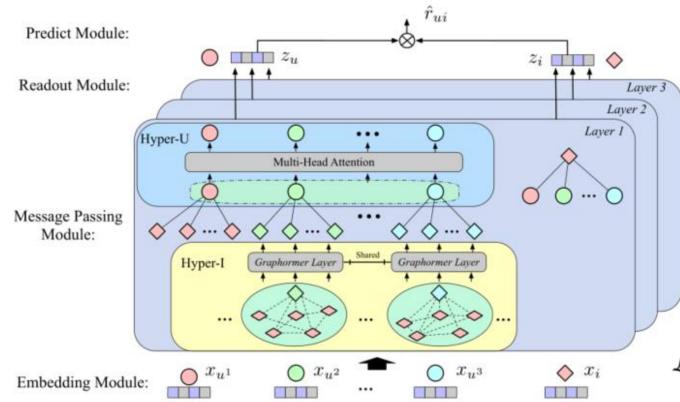
where $MHA_{HyperU}(\cdot)$ denotes the multi-head attention layer:

$$\mathrm{MHA_{HyperU}}(H_{\mathrm{U}}) = \mathrm{Concat}\left(\mathrm{Attn}_{\mathrm{U},1}(H_{\mathrm{U}}), \cdots, \mathrm{Attn}_{\mathrm{I},P}(H_{\mathrm{U}})\right) W_{\mathrm{U}}^{O},$$

$$\begin{aligned} \operatorname{Attn}_{\mathrm{U},p}(H_{\mathrm{U}}) &= \operatorname{softmax} \left(\frac{Q_{\mathrm{U},p} K_{\mathrm{U},p}^{\top}}{\sqrt{d_{h_{u}}/P}} \right) V_{\mathrm{U},p}, \\ Q_{\mathrm{U},p} &= H_{\mathrm{U}} W_{\mathrm{U},p}^{Q}, K_{\mathrm{U},p} = H_{\mathrm{U}} W_{\mathrm{U},p}^{K}, V_{\mathrm{U},p} = H_{\mathrm{U}} W_{\mathrm{U},p}^{V} \end{aligned}$$

Domain 1

(Target)



Domain 2

Domain T

(Source)

Readout Module:

$$z_v = \text{Readout}\left(h_v^{(l)} \mid l \in [1, \dots, L]\right),$$
 (4)

Prediction Module:

$$\hat{r}_{u,i}^m = f(z_{u^m}, z_i) \tag{5}$$

Model Optimization:

$$\mathcal{L}(u, i \mid \mathcal{D}_m) = -\log \frac{\exp(sim(z_u^m, z_i)/\tau)}{\sum_{i_-} \exp(sim(z_u^m, z_{i_-})/\tau)}$$
(10)

 (u^m, i_-) is a randomly sampled negative pair that $r_{u,i_-}^m = 0$

Experiments

Table 1: Dataset Statistics

	Product D	ataset		Public Amazon Dataset						
Domains	#user	#item	#click	Domains	#user	#item	#click			
MDR-A	84.6M	6.3M	3.1B	Books	1.67M	0.99M	26.8M			
MDR-B	34.0M	1.4M	0.6B	Music	0.11M	0.12M	1.5M			
MDR-C	24.7M	0.5M	0.3B	Movie	0.23M	0.08M	3.1M			
MDR-D	29.1M	0.6M	0.2B	-	-	-	-			

Table 2: Main results on product dataset

Method	MDR-A			MDR-B			MDR-C			MDR-D		
Method	Mrr	HR@20	HR@50	Mrr	HR@20	HR@50	Mrr	HR@20	HR@50	Mrr	HR@20	HR@50
Base	0.0368	2.37%	6.46%	0.0625	4.87%	12.60%	0.0640	4.78%	13.20%	0.0753	5.11%	12.65%
PPGN (Mix)	0.0481	2.98%	8.47%	0.0603	4.22%	11.61%	0.1017	8.58%	18.99%	0.1131	7.60%	17.59%
MGNN	0.0544	3.68%	8.11%	0.0699	5.34%	14.28%	0.1079	12.22%	21.34%	0.1428	10.67%	21.81%
PCRec	0.0635	4.38%	9.71%	0.0845	7.31%	16.63%	0.1546	14.71%	25.99%	0.1738	15.16%	26.59%
BiTGCF	0.0663	4.59%	10.61%	0.0986	8.66%	18.46%	0.1591	15.48%	26.49%	0.1577	13.73%	23.66%
BiTGCF+	0.0750	5.08%	12.31%	0.1237	9.87%	20.71%	0.1713	16.15%	28.63%	0.1685	14.76%	25.85%
H ³ Trans	0.1171	7.20%	16.79%	0.1686	14.29%	28.65%	0.2084	18.78%	34.89%	0.2158	18.69%	32.73%

Table 3: Main results on public amazon dataset

Method	Во	oks	Mı	usic	Movie		
	NDCG	HR@20	NDCG	HR@20	NDCG	HR@20	
Base	0.0270	4.71%	0.0631	13.39%	0.0433	10.45%	
PPGN	0.0289	4.96%	0.0660	13.93%	0.0473	11.23%	
MGNN	0.0311	5.12%	0.0672	14.14%	0.0465	11.03%	
PCRec	0.0331	5.31%	0.0742	15.67%	0.0489	11.52%	
BitGCF	0.0359	5.57%	0.0694	14.65%	0.0495	11.78%	
BitGCF+	0.0381	5.78%	0.0719	15.29%	0.0509	12.02%	
H ³ Trans	0.0399	5.97%	0.0761	16.01%	0.0524	12.33%	

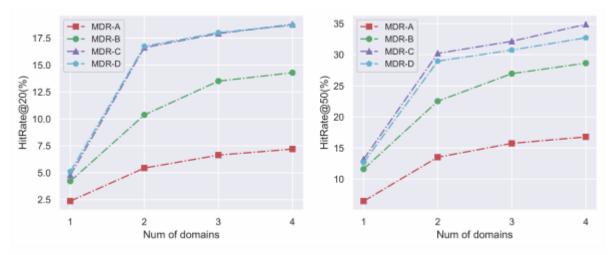


Figure 3: Performance comparison over different number of domains in MDR

Experiments

Table 4: Ablation study on product dataset. Methods refer to different variants of H³Trans.

Method	MDR-A			MDR-B			MDR-C			MDR-D		
Method	Mrr	HR@20	HR@50	Mrr	HR@20	HR@50	Mrr	HR@20	HR@50	Mrr	HR@20	HR@50
Vanilla	0.0544	3.68%	8.11%	0.0699	5.34%	14.28%	0.1079	12.22%	21.34%	0.1428	10.67%	21.81%
HU	0.0750	5.08%	12.31%	0.1237	9.87%	20.71%	0.1712	16.15%	28.63%	0.1685	14.76%	25.85%
HU+	0.0894	5.56%	13.68%	0.1383	10.53%	23.08%	0.1848	17.01%	29.82%	0.1846	16.38%	28.48%
PHI	0.1016	6.35%	15.22%	0.1509	11.96%	24.52%	0.1887	17.58%	30.92%	0.1913	17.21%	29.80%
EHI	0.1051	6.53%	15.68%	0.1581	12.34%	25.54%	0.1958	17.93%	31.64%	0.1937	17.84%	30.62%
EHI+	0.1171	7.20%	16.79%	0.1686	14.29%	28.65%	0.2084	18.78%	34.89%	0.2158	18.69%	32.73%

Experiments

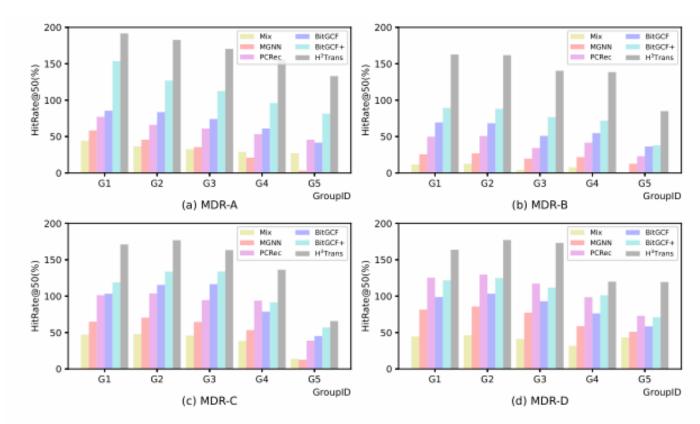


Figure 4: Performance comparison over different user groups (percentage increase relative to Base model)